Designers imagine, touch and walk the talk

This post is third in the series three posts that explores potentials of mind’s eye by blindfolding designers and architects and asking them to develop their design proposals, completely relying on internal resources and visualizing in the mind’s eye. They extensively used gestures while solving the design problem. On the other hand, in my earlier posts on teaching sketching for designers, I had focused extensively in getting the whole body involved in the act. I was interested in the relationship between the body movement and the thoughts.

Leaving the architects standing

To broaden the scope, I treated hand gestures as only a part of the larger aspect like conscious moving of body. I decided to refocus on the role that the body can play in solving design problem. In all my previous experiments, architects sat on a chair and then they where blindfolded. This had actually constrained their movement of the body. In these experiment, they were then blindfolded and left standing in a middle of a large empty hall, wearing a wireless collar mike in. I had hypothesized that they will move around and use their movements in some constructive ways.

Experiment design

This time we invited four architect volunteers with two/three years experience after graduation to participate. They were given a site plan with no indication of what functions to accommodate. Site given was rectangular, with one curved corner along the access road. It had gentle contours. The plan indicated trees (some to be preserved) and location of existing storm water drainage. The architects were asked to remember these features and verbally recalled them before they were given project requirements.

The design problem given was a hangout space with a cafeteria for student community on the campus. It also had a space that could be used by the students to display outcomes of their hobbies. The detailed account of the experiment and the results were published.1,2

The questions addressed were,

Will the freedom of movement impact visualization strategies?

Will the architects move their body to ‘feel’ the space that they develop in their mind’s eye?

If yes, can these movements be mapped to the spaces that they develop?

The design of the experiment ensured that the architects had to completely depend on their mental imagery and internal resources. We were exploring how the architects would use the freedom to move constructively and take advantage of the space in the hall. We were also looking for changes that may occur because the built spaces were much larger than their body and they have to be designed from inside as well as from outside.

Indeed there were visible changes in the strategies that architects used in visualization and in solving the design problem. They constructed a site in their visualization intervened in it creating architectural spaces around them, even walked around in the spaces created and when necessary altered them. Looking back, it seems like a peculiar interaction. The use of gestures was differed from the way Industrial designer used them. The difference is that the built spaces were too large to be physically sculpted! Their gestures and movements had different functions now. There were differences in the way four architect approached the idea of using the space. The visualization strategies also differed. We plan to discuss some key observations like 1] their presence on the virtual site that they visualized; 2] the strategies that they evolved to visualize the spaces and details; and 3] the way they interacted with their creations. The interested readers could refer to a detailed paper on this experiment.3

‘Presence’ on the site: Virtual or physical?

The video suggests that all the four architects were also seeing themselves virtually standing on the site, visualizing built spaces around them. How can a person be on a virtual site? This might sound strange, but it is true. Yet it needed to be proved beyond doubt by relying on concrete visible evidence of the designer was bodily present on the virtual site. The proof came from several sources in the video data and the transcripts.

We analyzed the transcripts to locate words and phrases that contained frequent references to self, such as ‘I am’, ‘on both sides of me’, ‘front of me, left side of me’, ‘on my right side’. (See figure 1) Surprisingly, most architects dropped references to north and referred everything with respect to the body, its location and orientation. In all four transcripts, there is only a single isolated reference to the North direction. (See video 1) In practice, North direction is critical in architectural practice and comes up often in conversations. Similarly, heat gain, ventilation and rain directions are worked out with North in mind.

 

Figure 1: Shows how concurrent speech that reveals the architect being on the virtual site

 

Video 1: There is only one reference to North direction in the four case studies is unusual. Their virtual presence on the visualized site was so dominating that most of them did not refer to North.

Occasionally the architect was asked a question ‘Where are you now?’ When declaring their location, they relied on the virtual space. They declared their locations with references to the features of the site or of new design that they were developing in their mind’s eye. (See video 2,3) Besides, when asked to go back to a specific feature or a location in the proposed design (like entrance), they made finer adjustments in their movements to reach almost the exact spot in the physical world! (See video 4) Such events further supported the idea of presence on the site. The boundaries between the physical world and virtual world seem to have blurred.

 

Video 2, 3: The architects were asked during the blindfolded session “Where are you now?” Observe the answers. All the architects were on the virtual site that they visualized and they were clear where they were located on it. (Architect in video 1 also ‘knows’ where he is.)

Video 4: Watch the architect making finer adjustments in his locations, before finally declaring where he is.

This presented sufficient evidence of the architects being on the virtual sites that they visualized in his mind’s eye. But we still need answers to the question,

Why were the architects on the virtual site? And how did it contribute to design decisions?

Beyond presence

It was not a mere static presence that could be observed. They walked up and down; exploring the site and conceptualizing built spaces around them. They seem to be imagining themselves constructing and using the spaces that they constructed. Most started with developing a built space from inside first but when required, they came out of the building to see what they had created. (See video 5)

Video 5: When working on the outside of the built space, architect steps out spontaneously.

How does one get valid clues to what they were seeing and experiencing? We mapped the combinations of gestures, body part movements and speech strings from the transcripts, second by second, and plotted the contents with respect to the site plan. (See earlier figure 1) The combined rich descriptions typically indicated site landmarks and new built features. On the other hand, simultaneous gestures, hand, neck and body movements showed the locations of these features. (See figure 2) This helped us reconstruct and map what they were seeing at that a given point of time and how it transformed. (See video 6)

Figure 2: Shows how concurrent speech with gestures and movements recorded and later mapped to reconstruct experiences.

 

Video 6: Watch how the site moves as the architect turns. With the site, all the built features also turn.

Virtually being on the site allowed him to operate in the ‘virtual’ space that he could build on, alter and experience from inside and outside. This was lot quicker than if had chosen the normal path of sketching these out and altering them. Watch the videos carefully. Their visualizations were far quicker to generate, lot more pliable and could match the speed of the evolving thoughts, ideas and fantasies.

Visualization strategies

The architects had to adapt to the unfamiliar situation spontaneously. So, to imagine consistency in the visualization strategies used by the four architects looked unrealistic. Nobody had any training in handling mental imagery. (Unlike sketching, the pedagogic implications of use of mental imagery have not been explored and so it had never been a part of any design curricula) Most often, it accompanies thoughts spontaneously and remains a very personal experience. The architects had to adapt to the new of ways on the spot. So, instead of searching for consistency in visualization strategy, we decided to look for differences between architects.

Architects moved on the virtual site as well as in the physical space, but the speed and the vigour of the movements and lengths covered were different. At times even the purposes of the movements seem to be different. The strategies could be grouped into three classes. Each architect treated one of the strategies as primary, but switched occasionally to other strategies when they found it convenient.

Strategy 1: Visualizing, working and moving in-situ

Two of the architects built the virtual building spaces and layouts around them and comfortably moved within it. (See video 7) They created the spaces and walked into them and altered them if necessary. The distances and spaces around were very ‘real’ to them. When asked to sum up their design, they were able to walk into the virtual built space that they created almost without error. The results clearly show that the two architects had developed a bodily feel for the virtual spaces that they built and oriented their body within these spaces. (See video 8)

Video 7: Architect created a virtual site and built the spaces around him, while pacing up and down. He is clearly developing his ideas by being inside the built spaces.

Video 8: Architects were uncomfortable if they miscalculated the body orientation and corrected it. Video shows one such example.

The visualization, particularly when in-situ, was very accurate. In summing up the design, when the architects were asked to sum up is design ideas, he could walk the same spaces with surprising accuracy. So accurate was this movement, that in spite of the eye mask, when asked to go back to the entrance, the architect carefully moved back and adjusted his steps to reach the correct location in the physical space! (See video 9)

Video 9: Watch architect going back to the exact location that she had planned as entrance. The last bit of adjustment showed surprising accuracy in the bodily feel.

When asked to describe elevation of the built space, one of them stepped out of the virtual space, to ‘see’ the building elevation and the entrance and reworked on it. (See video 10) Incidentally, these are the only gestures that sculpted the shape of the entrance interactively.

Video 10: Architect steps out and sculpts the entrance to the cafeteria. It appears as if she was developing the ideas in-situ.

Strategy 2: Carrying site on the shoulder

Two of the four architects moved into an in-situ space. Other two moved, but not with the same purpose and vigour. Their moving was a free wheeling movement. It had no direct relationship with the visualized space around. It appears that when they moved, they always had site with them. It appeared as if they were carrying the site with them as if it was attached to their body. So, the site moved and rotated, when they moved and turned. How does one prove such a strange conclusion?

Using the combination of concurrent speech strings, with gestures, neck and body movements, we could map their image that they were seeing in their mind’s eye. These dynamic map shows that when the architect moved or turned, the site also moved and turned, as if they were carrying it with them. (See video 6 shown earlier) It is not clear what was the advantage of this strategy to the designer, but they do look comfortable. Perhaps they were not aware of their own strategy of site moving with them.

Strategy 3: Shift over to a scale model

Some of the architects occasionally shifted to another strategy. From the body movements, gestures and speech, it appeared as if they were working on a scale model. They were outside the site now and perhaps viewed it from the top and created built spaces. Their hand gestures either showed location of the spaces or described shapes (often site contours, structure, roof) Gestures suggest that they are perhaps working on a small-scale model floating in the air, at a short distance from the body. (See video 11) This is closest to the earlier discussion on industrial designer (SP) working on a virtual model in front of him.

Video 11: The gestures suggest that the architect is working on a model close to her body.

General Observations

By allowing the architects to move around, we made the canvas larger. It revealed many new things. We derived three major visualization strategies from the data. For most, though one of the visualization strategies remained as a primary strategy, they were able to effortlessly switch to the other strategies when required. In spite of differences in strategies, all of them were able to solve the problem effectively.

With the broader canvas, the body movements and gestures were used to perform newer functions. They pointed out locations and directions of features that designers was conceiving or referring to. They indicated shapes and in rare case, they even sculpted the shape and the contours.

We also realized that the concurrent gesture + speech combination is so rich in information that it was possible to map what they were seeing in their mind’s eye using their body as a reference. This material acquired richness and revealed lot more of what was going on in the designer’s mind and what he was visualizing. The speech + gesture combination clearly revealed that the architect built spaces, while imagining a virtual site in his mind’s eye. He also used his body as a reference to locate things around.

In my earlier writings, I attributed this to ‘thinking with body’. Reflecting back now I found new explanations that closely match how and why architects and designers performed the way they did. It would be worth going to these areas by considering all the findings of the three articles together. We plan to do this in the next post.

I have come to believe that one of the important characteristics of designerly thinking is the inner urge to solve problems through the design expertise. The attitude can be captured as ‘whether there is a client or not, I want to, and need to solve the problem’. Designerly thinking is based on ambition as well as the excitement solving the problem, a point that writings on design methods miss completely. So, the constraints, like not allowing usual processes like sketching, blindfolding or left standing in the middle of the hall, don’t seem to bother them. None of them complained about the constraints imposed. They took the challenges in their stride, and in fact adapt to them, by spring back with spontaneous alternative strategies and approaches.

Sum up

This article is third in a series of posts that presented findings of the experiments on designers and architects, when they were blindfolded and asked to design. Sufficient evidence was presented in the previous two posts to conclude the most of them were able to handle design problems and come up with solutions and that too with amazing dexterity. This post focuses on the next objective, the role that body and its deliberate actions can potentially play in supporting visualization.

This time four architects were given a design problem and were let into a large hall. They were blindfolded, wore a cordless collar mike and were asked to work on an architectural project. The experiments were video taped and all the speech strings were transcribed for detailed analysis. The expectation was that they might use the freedom to move around while thinking of the solutions and this might impact their visualization. Indeed, they spontaneously responded to the new situation with different visualization strategies.

There was sufficient evidence in their speech as well as in the body movement and gestures to show that they were present on the site visualized in their mind’s eye. When asked, they would declare their location in the built form that they were developing. So, it is not surprising that they located everything around them with respect to their current location and orientation on the virtual site. The way they operated, even this virtual presence looked almost real to them!

Some of them used a strategy where they built the site in their mind’s eye, developed their ideas as virtual built forms, manipulated them in their visualization, but actually moved and interacted with their creations through actual physical movements in the real world. So accurate was their mapping between the virtual and real world that, when asked, they could physically walk back to the exact location in the built form and it would also tally with the physical location in the hall!

Another popular strategy was when they moved they carried the site with them. The site turned when they turned. Though the physical movement did not impact visualization, it was probably required to keep them active in the 3D space on the virtual site. Last, and perhaps the least used, was a conventional strategy of working on a small-scale model like situation. The fact that it was rarely used is surprising; as most of them are used to working with the scaled versions of their creation all the time, and that is how they are taught to develop ideas.

This data showed that body movements were far more pronounced and gestures played a supporting role. There were rare occasions when the gestures were used as tools to model the idea. Perhaps, the bigger size of the built form and the fact they had worked primarily from inside the spaces may have made it difficult to use gestures as shaping tools, the way industrial designers could.

The post concludes by listing the architects’ actions, visualizations and particularly the movements in the physical world. In the next post, we will review the findings of all the three articles in this series through the theoretical framework of spatial intelligence and embodied design.

Preview of the next post

The next post will take a bird’s eye view of experiments on imagery. We will address following questions.

While visualizing, how do designers benefit by use of body movements and gestures?

Why do they feel it necessary to move the body?

Does it support spatial decisions and design thinking?

The theoretical support for the mental events in this series come from work on forms of human intelligence and from findings in cognitive psychology. We will touch areas like 1] Spatial intelligence as well as; 2] Embodied cognition (We touched this in earlier post “out-of-box ideas to teach sketching”) as well as its spin-offs like embodied design and imagination.

Notes and references.

1 Athavankar. U. (2008) Exploring the boundaries of spatial intelligence, Conference on Research and Training in Spatial Intelligence, Evanston.
2 Athavankar. U., Prasad B., Guruprasad.K., Patsute R. and Sharma S. (2008) Reaching out in the mind’s space, In Design Computing and Cognition ’08, Eds. Goel A., Gero J, 321-340. Springer.
3 Athavankar, U., (1999) Gestures, mental imagery and spatial reasoning, In Visual and Spatial Reasoning, MIT, Eds Garo and Barbara Tversky. 103-128. MIT

 

 

Advertisements

Out-of-the-box ideas to teach sketching

I had opportunities to teach sketching for over two decades to graduate students; some had joined the programme in design with limited sketching skills. Focus was always on the design related courses and sketching could be spared very little time. I thought I should convert the problem of lack of time into an opportunity. Reflecting on it now, it appears that the way the course evolved was influenced by my interest in cognitive psychology and also little bit in sports training. With the result, number of new ideas entered my teaching. I still miss teaching this course. So, I created a self-learning version of the course on web with assistance from Ms Vineeta Rath. All the course modules and videos are available on D’Source 1 (URL: http://www.dsource.in/course/freehand-sketching)

In this post I plan to touch only few key concepts and ideas with limited support from action videos. For those who are interested in following these ideas, do spend time on the link above.

Structured learning and out-of-the-box methods

We established in the earlier post that thinking sketches are different as end products, as an act, as a process and thus are a category by itself. So, it not only deserves a name of its own, but a different way of teaching and learning.

In the following sections, we hope to prove that it is possible to learn to draw thinking sketches quickly, using out-of-the-box methods. We have divided this section into learning two of the three components that we discussed in the last post, namely 1) The act of visualization and problem solving, and 2) The act of sketching. As mentioned in the last post, the alternative solutions evolve, are visualized and worked on in the mind’s eye. So, the way the article is planned, we will begin with basic concepts of learning visualization, and then proceed to learning the act of sketching and return to visualization. The reasons for these twists and turns will be clear once the reader goes through the article. However, the major issues in visualization and use of mind’s eye, the area I have been researching on for the past two decades, will be covered in details in the future posts.

1 The act of visualization

Within the context limited to sketching we will answer two of the questions listed in the last post. Let us return to first the question,

“How can we expedite learning to visualize ideas in the mind’s eye?”

Visualization, as defined in this article, is ability to generate, hold, operate on and transform images in the mind, in absence of the real image or the object in the front. The sketching in many ways compensates for the visualization ability. It allows you to record on paper the little changes that occur in the evolving images in your mind’s eye, thus increasing your capacity to handle material. To improve visualization, it is important to trick the learner and force him to solve the transformation of images in his mind’s eye. Here are some ideas.

Visualization: Work out what we don’t see

Orthographic drawings are particularly challenging as they force the viewer/reader to visualize from the available 2D information. The advent of 3D modeling on has two ‘side effects’. First, the importance of orthographics (particularly the cross sections) is almost lost. Second, we are loosing the abilities to hold and operate on the visualized images. None of these are focus of design education any more. 2

How do we use it to develop 3D visualization? Give an orthographic drawing that contains multiple objects composed in space. Stick this drawing on their sketching sheet so that student can’t rotate the paper and see it from the other side. Then ask him to draw it from a viewing angle located on the opposite side. This is a simple but interesting problem in visualization. If the student rotates the paper to view the composition from the viewing angle given, he will see the composition in the correct orientation, but see his sketch upside down, because they have opposite orientations. With the result, the students are forced to visualize the compositions in their mind’s eye and draw and thus develop the visualization abilities over a period.

We will return to visualization issues after the discussion on the act of sketching. Let us explore answer to the next two questions,

“How does one learn to sketch as if it is a routine and natural act that demands very little attention and budgeting of mental energy?”

“Can you reduce time and effort to produce this level of competence by planned and structured efforts?”

2 The act of sketching

In the model shown in the figure 3.2 in earlier post, ‘Why do designers sketch?’ explains role that sketching plays in the act of design problem solving. The different nodes of the model had cyclic relationship as shown briefly below. (The numbers in the bracket refer to the nodes in the original figure.)

“Think /solve problem [5] >>> Visualize [2] >>> create instructions for sketching [3] >>> produce the sketch [4] >>> observe the sketch [2] >>> think and react [5] again.”

In the following discussion, the focus is on [3], [4] and [2]. Though these nodes are integral part of the thinking process in design problem solving, they are consciously delinked, to focus on learning to sketch. In fact, the out-of-the-box objective that we plan to move to is to learning to delink the act of sketching from thinking about sketching. It aims to execute sketching in autopilot mode, without making substantial demands on the limited mental energy. This suggests radically different approach like learning to divert attention away from the act of sketching, compensated by the ‘feel’ of body movement monitored internally. Let us expand on this idea further.

When it came to executing these ideas, we borrowed concepts and ideas from sports coaching, particularly from sports that have very short response time and are largely based on developing a ‘feel’ for the actions. The borrowed concepts were transformed to suit sketching or sketching related assignments. Like in sports, we divided the tasks into pre-sketching warm-ups, workouts and specially designed sketching assignments. Warm-ups ensure that the body is ready for action through correctly designed exercises. Each group of workouts has a specific objective/s, which is a component of the total act of sketching. These two cover most of the innovations in teaching sketching. We do not intent to discuss the third task, but interested readers can review them on D’Source.

‘Feel’ the act of sketching

This article adopts an unusual approach to sketching which is so much visual in nature. It includes radical ideas like cutting off the visual feedback, distracting, to moving your body to ‘feel’ what you are drawing. The question it addresses is

“If you close your eyes, ‘What parts of the body can contribute to getting a correct sketch?”

What will be discussed now will deal with how these ideas were converted into series of related course assignments for students.

Distracting the classroom

Shifting attention away from the sketch being drawn is one of the principle goals. When the act becomes near natural, you attend to many other things besides the principle task. We discussed examples like driving where you can engage yourself in conversation with partners. Besides, executing multiple tasks is very much a necessity in the contemporary world. The first step to achieve this is to distract the attention to 1) related, and later 2) unrelated tasks.

Several ways of distracting the eyes away, partially or fully, from the sketching action were explored mainly to exploit classroom format. For example, make student pairs where they stand facing each other. Student A draws a continuous line with a crazy path and at varying speeds. Simultaneously, student B follows his line path and his speed of drawing by copying the line at a fixed distance on the same paper. The execution of such task demands that the student B is forced to divert his visual attention intermittently and yet continue with the act of effortless sketching. Several similar out-of-the-box scenarios are explained in the main article on D’Source.

‘Feel’ where the pencil tip is?

Interestingly, even the act of sketching distracts the person who draws it. While sketching most students are obsessed with continuously seeing what they draw and correcting it. They focus on the pencil tip almost all the time, and the lines are corrected immediately when something goes wrong. So, the eraser is used more often than pencil! This practice is probably fine when sketch itself is an end product to be appreciated, but not when sketching is to be used as a thinking tool. In this article we are concerned with thinking sketches, where the designers match the sketch with what vague ideas in their visualized images. So, the obsession with the pencil point and the act of sketching is a distraction! How do we then get rid of this obsession?

Think about it in a different way. You correct a sketch because you see it and spot a mistake. What if you are prevented from seeing the pencil tip by obstructing his line of sight? The constraint appears strange, but the effects are dramatic. Mount a paper shroud on the wrist. This obstructs immediate vision and areas around the pencil tip, forcing the learner to ‘feel’ the locations of the pencil tip internally as well as act on the basis of distant visual clues from the existing marks on the paper.

  1. Beginners depend on continuous visual tracking of the pencil point and loose the big picture. Is it the fear of pencil going off track?

2. Shroud cuts off the sight line, forcing the learner to develop judgement and ‘feel’ of the     pencil point.

When used for a visual medium the idea appears strange, but the results were completely counterintuitive. Obstructing the line of sight frees the students from the fear of making errors. They are more relaxed, perhaps because they have a valid justification to make mistakes. With some practice almost all students develop a ‘feel’ for correct lines. However, this is not automatic. They also go through other special exercises to develop that ‘feel’. All the students manage to draw reasonably correct lines after some practice. Interestingly, the lines were lot smoother now!

Body can ‘feel’ and ‘see’ the line path

When you can not see the pencil tip while sketching, how does a student know that he is drawing a horizontal, a vertical, an inclined straight or curved lines? And how does he start and end the line at the right points? How does he know that he is drawing a circle? (where the end points must meet) or draw a correct semi-circle or a curved segment that is symmetrical? Normally, the eyes track the path and give a continuous feedback.

Believe me, it is difficult but not an impossible task. Even when you are blindfolded, you know that you have walked straight, or taken a right angle turn. We know if we are correct or wrong by the internal ‘feel’ of the movements of body and its parts. The ‘feel’ makes us survive in sports that have very short response time. Can we then compensate this loss of visual feedback by perceiving the correctness of the line drawn by internal monitoring of the movements of the hand and the body?

Try it out yourself. Draw a straight or a curved line path (about 50 cm long) by closing the eyes. Before you open your eyes, guess where and how much it may have gone wrong.

Normally the use of wrist and forearm restricts the free movements of the hand, making it difficult to draw longer lines freely. To achieve this ‘feel’ the students have to move the entire body hinged around the feet and design complementary body movements for sketching. In this course, the students were asked to deliberately change these hinge points as far away from the pencil tip as possible, so that the body parts will move freely. For instance, drawing a long straight-line by standing and moving the hand from the shoulders and body from the well-anchored feet. Initially, the body movements appear more rigorous than what one uses in normal sketching. Over a period one sees the advantages of moving the body. It contributes to making actions as well as the line paths smoother and fluent irrespective of the lengths of the lines drawn.

There are several exercises that are shown on D’Source. The classroom experience shows that the goals seem achievable by structured training. Here is one example,

3.  Instead of moving the wrist and the hand, the emphasis is on hinging the hand from the shoulder and body from the feet on the ground. Standing while drawing permits these movements. So, for workouts, the learner must stand, move and act.

‘Feel’ of perspective space through body

Drawing perspective lines where they converge on a single or two vanishing points is not easy. Obviously, beginners are overwhelmed by these problems and their attention is diverted to true heights, line alignment, line inclinations and directions to get a correct perspective. Such learning demands that you budget attention and thus mental energy to the task. When the action of perspective sketching and its corrections completely depend on visual feedback and direct attention to the pencil tip, it is bound to divert the mind away from its preoccupation with the design problem solving.

Developing ‘feel’ of 3 D perspective space is important in architecture and 3D design projects. It is more easily said than done. This ‘feel’ needs to be consciously developed. The course insists on use of series of special underlays to draw shapes in perspective with a reasonable accuracy. It ensures that a student can reasonably draw accurate perspective by the time the course is finished. To execute effortless perspective, eventually the underlays must be dispensed with. This is something that only a few students could achieve.

4.  Specially design underlays and exercises help develop sense of perspective space.

“It is critical to develop the ‘feel’ of the perspective space, where a cube (and later several cubes within that space) are drawn sharing common ‘implied’ vanishing point.”

Sketching could become as natural as writing, if we borrow techniques from writing. You never change the grip and the angle in which the pen is held. You don’t always look at the tip of the pen. Writing in running hand ensures that the flow is maintained. It is likely that the normal expected properties of good sketching, like consistency of lines and fluency, could get neglected. We cannot afford this. So, a large number of serially presented workouts focus on these aspects.

Need for control

Imagine quickly drawing a square using continuous line with these school habits? (or more difficult, a cube in perspective with minimum lifts of pencil tip) Most students start with a baggage of habits that they learnt during schooling. The practice of often changing the pencil grip, wrist angles and preferences for drawing line in a favoured direction continue to obstruct smooth sketching. Continuous straight lines are ‘constructed’ by cumulating small marks of pencil and corrected by eraser. Children, and even grownup, rotate the sketchbook to align the line path to a favoured direction of drawing lines. Such school sketching habits make simple task like drawing a square difficult to execute. So, the square is ‘constructed’ in small strokes and by rotating the sketchbook. Any change in these routines affects the quality of the line drawn. Developed early in school, these practices continue even later. They affect the speed and obstruct fluency in sketching that is critical during idea generation phase. Such acrobatics is unimaginable when you want to write, so why should this occur when drawing shapes?

5. Observe the number of times the pencil grip is altered when drawing? We don’t do this when writing. So, why should we change grip when drawing?

6. Learners have a preferred direction for drawing lines. So, the paper is rotated to match the individual preference. Imagine drawing a square quickly, without lifting the pencil? It is almost an impossible task.

7. Most lines are constructed by collection of sequential short strokes. This habit develops because there is a pressure that the line may go wrong. The fluency is sacrificed.

The course has assignments that ensure these habits are left behind. The focus is on maintaining the quality of the line and fluency, irrespective of the direction of the path, the size of the lines, tools used to draw, the quality of paper and the speed of drawing.

8. In order to learn control on movement, the workouts insist that you change the speed of drawing lines within the line path, without changing the quality of the line. This gives control on end points of the line.

Typically, it is easier to maintain uniformity in appearance of the line (thickness, darkness and texture) if it is drawn very fast, but this happens at the cost of control over the path alignment. Draw the line slowly so that the line follows a correct path, but it difficult to retain uniformity. What you need is the ability to willfully control the speed without affecting the uniformity and that requires lot of practice. Several assignments are developed to acquire this control. These assist the students to develop fluency and smooth movements while sketching, even if the speed with which the line is drawn is changed.

3 Back to visualization with a difference

It was planned that we will return to section 1 on visualization and problem solving after the detour. Let us get back to this. If the short-term memory has to focus on solving design problem, we have to ensure that the student’s mind is not occupied with thinking required to execute his sketch. Sketching should be effortless and natural act demanding little mental energy from the student drawing it. His actions should be like writing, where the handwriting appears on the paper almost in autopilot mode, while the author continues to develop his thoughts unhindered. How do we judge that the student’s sketching action have reached this level?

Testing the pudding

There are several assignments in the section above that force the student to occupy his mind with other issues. As a final exam, we developed a really extreme scenario to judge this level of competence. It is based on a question,

“Can we develop abilities of thinking of unrelated things while visualizing and sketching?”

Of course this is difficult and most challenging, but all the same it is necessary to acquire such ability. Using student pairs, we conducted a formal viva in a totally unrelated course, while simultaneously visualizing and sketching a difficult composition.

Student A is asked to draw a composition as if viewing from the opposite side, almost similar to the assignment mentioned in section 1 above. Student B would take A’s viva in an unrelated subject and would fire the questions, while A continued to draw and concurrently answer the questions verbally. The scenario makes sure that A is preoccupied with both unrelated tasks and his thinking is continuously diverted to subject of the viva. He has to think and give answers and draw simultaneously.

exam freehand9.

9. Sketching exam with a viva in an unrelated subject

The scenarios and assignments appear strange, but they have been tried and tested during two decades of teaching sketching. They do lead to routinizing the act of sketching and make it appear like a natural act, with limited expending of mental energy budget.

In this article, there is considerable focus on act of sketching based on ‘feel’. The idea is to make the entire body participate in the act. Is there more to it than what meets the eyes?

Reflections: Does designing/sketching use embodied cognition?

The course continued to evolve through 80s and 90s, till I shifted my teaching focus to other areas. Interestingly, further theoretical underpinning to these ideas comes from recent work on embodied cognition. It proposes that the characteristics and aspects of the physical body shape many features of cognition and their influences have significant causal role in cognitive process beyond the brain. 3 Embodiment assumes that what happens in the mind is depending on properties of the body, such as kinaesthetic properties. Some of the know examples are, where people remember gist of the story better if they physically act it out. Similarly, when students are physically and mentally involved in learning, they retain content better. The idea of using body movement and developing a ‘feel’ of the line path is in principle close to embodied cognition.

Response to music offers a good example to understand this idea of embodied cognition. Embodied approach is based on listening to music with bodily movement (moving hands, head, torso and tapping feet) that contributes to musical meaning formation. Such a perception is based on multi-modal encoding, where perception and actions are mixed. Disembodied approach is based on perception and analysis of musical structure. In the first case, the understanding is corporal; in the second it is celebral. It also suggests that the motor system and cognition could be mutually influencing each other.

This is equally true with production of live music, which integrate the corporal and the celebral acts. Most singers and musician produce accompanying gestures, body movements, handle musical instrument and sing simultaneously. Such an immersive performance is difficult to be perceived as a disembodied act. (Even in radio recording era, the gestures were less conspicuous, but not absent).

Through these sketching workouts, we seem to have attempted to make sketching an embodied cognitive act. If we assume that this immersive state is critical for a creative act as in music, can design problem solving show similar bodily involvement. If not, can it become as immersive as production of songs. Can it use or exploit multi-modal capabilities to the fullest extend, than restricting itself to hand-eye coordination. We seem to have raised new question,

“Can there be embodied design problem solving that integrates solution exploration, visualization and sketching into an immersive act?”

Right now, I have no answer to this question, nor is it easy to find.

Sum up

We defined thinking sketches as a category that not only deserves a name of it own, but a different way of teaching and learning. This post gives glimpses of what is actually covered in the course. It takes off from the goals established for the act of sketching in the earlier post and develops it into a structured learning programme for design, that is effective and quicker.

This post answers several questions that were raised at the end of the last post. They included, ‘How can we expedite learning to visualize ideas in the mind’s eye?’ ‘How does one learn to sketch as if it is a routine and natural act that demands very little attention and budgeting of mental energy?’ and ‘Can you reduce time and effort to produce this level of competence by planned and structured efforts?’ This post deals with answers to the last two questions extensively. It just touches the first one cursorily, but leaves it for extensive treatment in the next post.

The actual course reflects the mix of ideas and concepts borrowed from two desperately diverse sources, like cognitive psychology and sports coaching. The focus is on learning to draw effortlessly, quickly and without too much attention and mental energy. So, the focus is on diverting attention away from the act of sketching. This does appear contradictory, as the learner is asked not to think of what he is learning or had planned to learn! The course is based on resolving this contradiction and that is the reason why it is so different in concepts and execution of assignments.

The influence of practices from sports coaching is evident, because assignments are conceptually treated as warm-ups and workouts, each addressing a specific objective. The focus is on learning to draw by the ‘feel’ of the body in action.

The workouts distract the learner from watching the pencil tip while sketching, by mounting a shroud on the wrist or by distracting him through tasks. However, learning to internally monitor the hand and the body motions to develop the ‘feel’ of the path compensates the loss of feedback. Similar workouts are used to develop a ‘feel’ of the perspective space.

Reflecting back on this work, the article concludes by suggesting how the approach is closely related to the ideas of embodied cognition.

Preview of the next post

In the last few posts, we have discussed the role and nature of representation in design problem solving. We viewed thinking sketches as a separate class of sketching and treated it as a thinking tool. We discussed how it could be learnt through a structured programme.

I started my research with sketching as a focus. I was convinced of its role, but out of curiosity I decided to ask myself

“What if I prevent architects and designers from sketching?”

The experiments I conducted to search for the answers led to interesting findings. More about it in the posts that will follow.

Notes and references

1 This article is an abridge version of the one posted on the D’Source website plus lot of new contents that have come from the recent reflections. While some videos are included here as examples, more videos of each of the techniques developed are included in the course material on this site. The readers may want to refer to it, if they have plans to follow the ideas further.

2 To compensate, I designed series of puzzles based on cards to develop specific abilities of the mind’s eye. We will discuss more about the mind’s eye abilities in the subsequent posts.

3 What is embodied cognition?

Embodied cognition is an alternative to the traditional cognitive model based on symbol manipulation, information input and production of output. It also offers alternative to the computational approach to understanding of brain.

Traditional approach focuses on higher-level strategies like development of concepts, categories, reasoning and judgment and processing symbols. It does not account for the active use of motor system, perceptual system and bodily interaction with the environment.