Part II: Reflecting on gestures as design behavior

Problem solving is often treated as a cognitive act and problem solver as an information processor. This is also extended to design problem solving. Yet the act of design, standing on the fence between art and science, has different nuances. So, there is much to learn from how designers solve problems. Like all cognitive acts, designer’s internal information processing remains invisible. However, designers in the act of design display unique design(erly) behaviour. The clues to what goes on his head are through observing designer the visible results or overt actions in the act of problem solving,

As the designer progresses towards solutions, the spatial issues dominate his thinking. At that stage in the design process, design can be limitedly defined as act of resolving spatial issues to achieve predefined goals. Designer’s decisions involve designing elements and their specifications as well as arranging, composing and iteratively manipulating them in space to achieve stated goals. At this stage need to support the evolving thoughts through sketching or 3D representations becomes critical. Such design(erly) behavior includes, think aloud transcripts, mental imagery, gestures and body movements when working in blindfolded mode (in normal circumstances sketching and models produced).

These are the traits we have been decoding all along. In all our experiments we have tried to capture these and treated them as a focus of our analysis. Though we have treated them as separate external manifestations of what goes on the in the mind, the experiments suggest that they are closely interwoven with the thought processes. So, we have used visible clues as a ladder to understand how, why and when they assisted the thoughts that drove the decisions.

What does visible design(erly) behaviour tell us about the act of design? This is a continuation of the discussion started in the last post “Sketch or not to sketch? That is the question”. It ended with following questions,

Why do designers use gestures and movements of the body when they solve problems? Do these support spatial decisions, visualization and design(erly) thinking? And if so, how? When should they prefer gestures and body movements?

We have yet to find explanation to why designers and architects used gestures and physically move their body through mental spaces that they created and interacted with them.

So far we have referred to gestures and body movements as one entity, there are qualitative differences within and between them. A more detailed analysis of the classification of gestures and movements and the roles they play is available in my earlier papers.1,2 In answering the above question, we will only touch some of the key gestures and body movements that seem to have a role in understanding, thinking, conceptualizing and representing the creations. We will also focus on how and why they may have contributed to the evolving thoughts.

Plan of the discussion

We plan to look at external traits of design(erly) behavior in different experimental conditions and discuss their effectiveness in design problem solving. We will also compare the two modes, when using sketching and when blindfolded. Note that it deals with limited part of the design process, when designer is grappling with spatial issues.

It is conceived as a four part series. This post (Part II) primarily explains the role of gestures and body movements and tries to explore spatial intelligence as a theoretical framework to understand and explain the design(erly) behavior. In the next post we will focus on embodied cognition as a framework and the third will include the other special features.

Overview of the theoretical frameworks

We hope to find support in two key theories that come close to explaining this design(erly) behaviour. In this Part II, we will start with Howard Gardner’s theory of multiple intelligences.3 This theory relies on the computational capacity, activated by external or internal information and is consistent with our treatment of designing as a cerebral act. We would be particularly focusing on the two relevant areas in intelligence; 1] spatial intelligence and 2] bodily-kinesthetic intelligence.

In the subsequent post (Part III), we will seek support in the emerging theory that deals with embodied cognition. The concepts propose that many features of cognition are shaped by the characteristics and aspects of the physical body and these influences have significant causal role in cognitive process beyond the brain. It accounts for the active use of motor system, perceptual system and bodily interaction with the environment. It treats design as a corporal act.

Cognitive embodiment and spatial intelligence theories are built on different theoretical bases. The first relies on computational approach and thus treats problem solving as a cerebral act. The second argues for the role of bodily actions. It believes that thinking is also corporal in nature, at least in specific disciplines. In spite of their opposite theoretical stands, there is lot that can be learnt from these theories in understanding design(erly) behavior during problem solving.

A quick review of the experiments

In trying to find logical explanations we plan to discuss results keeping in mind all the experiments in this series. Participants in these experiments were industrial designers and architects solving problems typical to their disciplines. A quick overview of the series of experiments and the differences between them will offer the context for the discussions that follows.

Industrial design project

SP worked on a casserole project, a small tabletop domestic product. The findings of this experiment were discussed earlier in posts starting with ‘Can we prevent designers from sketching?” Short videos clips showed some of SP’s design actions. The readers could always revisit this material to refresh their memories. In this post, I plan to only briefly review the findings of these series taking into account the entire video records of the sessions .4

Let us start with a quick recap of the events in this experiment. The subject ‘SP’ was given a brief to design a casserole for domestic use. The project brief also demanded submitting designs of matching bowl set. Table 1.1 captures the set up. SP incrementally built the idea of the box, starting with fixing the volume and proportions of the rectilinear shape. It appeared as if he was shaping the volume with his hands moving in the air in front of him. He could manage this effectively as the actual size of the product was within his grasp. Most of these gestures were purposeful and were contributing to develop the casserole and bowl shapes. As he progressed in design, he started sculpting the shape and fine-tuned it. (refer Video 1) He assigned colour, transparency, textures and even finalized the product graphics. Some of his gestures simulated actions of the use of these products. He even simulated assembling of the components in manufacture. (Refer Video 2.) (Closest visualization of the scene would be to imagine musician acting as if he is playing an instrument in creating music without the instrument being there.)

Condition no. Design project Experimental condition and description

1

Industrial design project.

Table-top domestic products as projects.

Casserole, Salt-n-paper container etc.

Designer blindfolded

Designer sitting in an office chair and matching environment.

Small size, table-top product, Free flowing form.

Table 1.1. Designer was blindfolded and sat in a chair and solved the design problem

Video 1: The industrial designer shaping a virtual object in front of him as if it was real.

Video 2: The designer simulating assembly of parts

We deliberately changed conditions, where the architects solved a typical architectural problem. In condition 2, the architects were ushered in an office like environment, asked to sit and were given the site plan to see and recall. Then site plan was withdrawn and they were blindfolded. So, they had to develop the 3D representation image/s of the virtual site in their mind and worked with it. In condition 3 the procedure remained same, except that they were left standing in the middle of an empty hall, obviously without access to any sketching or modeling tools. Table 1.2 captures this.

Condition no. Design project Experimental condition and description

2

Architectural project Mid-size built space.

Student cafeteria with constrained site.

Designer blindfolded,

Designing while sitting in office like environment,

Mid-size site, Body enveloping spaces,

Constraints of construction.

3

Architectural project Mid-size built space,

Student cafeteria with constrained site.

Designer blindfolded,

Let in to large hall, can move if the designer chooses.

Mid-size site, Body enveloping built spaces.

Constraints of construction.

Table 1.2: Architects solving a problem. The differences in the conditions 2 and 3 are mainly in the working posture.

It is interesting to watch the full videos of the architects performing and ask ‘Why did the used gestures and movements?’ In this part we will rely on concepts like multiple intelligence and its subset, spatial intelligence to explain gestures. In part II, we will use embodied cognition as a theoretical framework. Both seem to offer new and credible explanations.

Treating design as a cerebral act

Designer is learning all the time by studying the problem and from the world that he lives in. He reacts to what he sees, understands and learns. The information that he absorbs and manipulates contributes to the thoughts and ideas. It influences the way he thinks and takes design decisions. The design actions are not just trial and error acts. They obviously involve intelligence. Thoughts during designing are driven by information and intentions. So, in this framework the designer is seen as information processor and design primarily as a cerebral act.

Traditional approach to cognition focuses on higher-level strategies like development of concepts, categories, reasoning and judgment. It is based on information processing and symbol manipulation resulting in production of output. Brain is an information processor and its actions are explained by computational approach.

Over the years the information processing act of design has evolved into a somewhat structured process. The design process followed ensures consistency in performance over time and projects and yet allows sufficient freedom to explore uncharted paths. It is reasonable to assume that the different stages of the process will demand different classes of information. It follows that these steps will demand specific forms of intelligence as well as unique skills. In the discussion that follows, we hope to identify some of the dimensions of spatial intelligence visible in these experiments, particularly in different segments of the design process. We hope to explain design(erly) behavior too.

Spatial intelligence is spatial reasoning and judgment

Driven by designer’s reactive thoughts, the new ideas are continuously generated, often as images. They are conceived and converted into sketches or seen in the minds eye. They are compared and judged. These images continue to evolve through designer’s reactive actions and interventions. The study of the entire process and the accompanying transcripts reveal the creative moves and reflections that SP generated throughout. (Refer Video 3)

Video 3: Industrial designer making move and reflecting on it. This continued throughout the initial part of the session.

When designers handle tasks like making effective design changes, developing alternative spatial layouts is obviously not a process-based on trial and error. To create and judge different alternatives demands reasoning, intelligence and considered judgment. It is a cerebral act. Design problem solving demands spatial judgment and spatial intelligence. All the solutions that SP developed, accepted and rejected during the session support the idea that design is a cerebral act. (condition 1)

This is also visible in conditions 2 and 3, where the architects thought, created and built the idea virtually, grasp and react to it and then alter it again. The architects too were visibly engage in modifying their ideas and trying to grasp them and figure out the implications. This involves anticipating the consequences of changes. Comparing and judging the ideas mentally needs intelligence and these cases spatial intelligence.

In blindfolded conditions 2 and 3, these steps were lot more difficult, because the dynamic events occur in the images in the mind’s eye, which are known to be extremely fragile. They had to hold these images as dynamic displays that they could react to, which demanded budgeting additional mental energy, over and above the energy spent on thinking of new ideas that keep the images in the state of flux.

Spatial intelligence in visualization to drawing

During the later stages of the design process, thoughts and ideas lead to some form of spatialization. Initially it often takes a form of mental image. Capabilities vary in simple tasks like depicting an image as ‘seen’ into these external forms. So, designers do need the ability to convert their mental images into series of sketching strokes, or in case of a model, actions on a clay block. Even more challenging is the tasks where the ideas are half-formed and designers expect the assistance from externalization efforts to concretize his ideas. These are not trivial tasks. The subsequent post (Part III) will touch this aspect in details.

How do we explain the architects exploiting the opportunities? They ‘walked’ the built spaces that designed. What explains the need for these movements?

Within this framework, attempt is made to explain gestures and movements as manifestations of bodily-kinesthetic intelligence. To be mobile in the space (navigating) to understand space and chasing dynamic changes are dimensions of spatial intelligence that emerged clearly in these studies.

Spatial intelligence and navigation

Architect’s navigating through the site to understand and create spaces is conspicuously visible in condition 3, where the architects were allowed to move after they were blindfolded. In condition 2 they seem to virtually move on the site though in real world they were sitting.

Normally the architects would move on the actual site exploring the features. It involves learning spatial arrangement by exposure to the available space by navigating back n forth. It needs spatial intelligence to learning about the spaces by walking or navigating i.e. by being mobile in that space and then connecting these pieces into a coherent mental model of the site in the mind. Don’t we develop notions of terrain maps by driving through it multiple times and then connecting the short segments together?

It is common to navigate in the space to understand it. In normal circumstances, to avoid mental energy required to maintain the evolving ‘things’ in the mind’s eye, architects and designers convert these perceptions in to a plan and add their notes.

In condition 2 they paced the virtually created site, going back n forth, turning and built spaces around their bodies. (Refer video 4 and 5) When allowed they physically moved in the hall, treating it as a virtual site. (refer Video 6) They were trying to absorb the features and spaces on the site and also constructing on it actively and interactively. (Refer to Video 6) Both the actions were almost simultaneous.

Video 4: Evidence of creation of virtual site in the mind’s eye

Video 5: Evidence of creation of the site in the mind’s eye

Video 6: Designer actively interacting with the shape created in the mind’s eye, treating it as if it is real.

Watching the video and listening to their think-aloud transcripts during the design action suggest that the architects moved on the virtual site from location to location. In condition 2, the navigation and movements were essentially on a virtual site in their mind. The navigation and movements were essentially virtual.

For architects, virtual and physical navigation on the site remained the most popular strategy to understand the current state as well as for conceptualizing the idea. The self-navigation ensured that the processes of sensing information remained lot more active and under designer’s control.

Spatial intelligence and chasing change

They virtually built spaces around them and changed them, reacted to their own decisions as a result of their evolving thought process. Spatial intelligence demands the ability to quickly grasp a rapidly changing environment. Chasing changes and handling rapidly changing situation is common also in architectural assignments.

The designer’s actions and behavior do find explanations in the theory of spatial intelligence. A more exhaustive study across different design disciplines and levels of expertise is sure to reveal more about the different dimensions of spatial intelligence.

Yet, it does not explain fully the natural urge to use gestures and body movements. For that it is necessary to turn to embodied cognition. Let us treat designing as a corporal act. More about it in the next post.

Summing up

These four posts will take an overview of the entire series of experiments that were conducted over a decade. Revisiting the experiments was refreshing in several ways. It allowed reflecting back on the objectives of the experiments. To find reasons for the consistencies in findings was a challenging task. Besides, the findings could be now explained with new theoretical frameworks. The discussion here is restricted only to part II.

These experiments differ in several ways. Industrial designers were given a typical design of small tabletop objects. Architects were given mid-size architectural projects like designing individual detached residential or commercial buildings on a defined site. In the later case, the conditions were further varied. In first case, the architects sat in an office like environment and in the second, they were left standing in a large hall. Because all were blindfolded, they could not have used sketching as handy representations. They spontaneously resorted to gestures and/or body movements to develop the ideas, thus revealing some new dimensions of design(erly) behavior.

The protocols of the sessions clearly show a close partnership between the designer’s evolving thoughts and the process of externalization. In this case, there is extensive dependence on gestures and body movements during conceptualization of new ideas. These posts are an attempt to explore answers the question,

Why do designers use gestures and movements of the body when they solve problems?

The design problem solving is viewed through two theoretical frameworks. Part II (this part) treats design as a cerebral act and considers designer as an information processor. It shows how intelligence, and this particular case visio-spatial intelligence, play role in problem solving and explain the need for use of gestures and movements.

Gardener’s multiple intelligence framework explains part of the design behavior and decisions through the idea of spatial intelligence. The protocols show how spatial intelligence, reasoning and judgment play a role in developing, comparing and selecting ideas and taking them forward.

In absence of external representations like sketching, the ideas were represented internally as fragile mind’s eye images. Yet, designer’s managed to overcome this limitation by supporting the ideas through sequential gestures. The sessions also bring forth another dimension of spatial intelligence involved in the process of creating drawings from visualization. As we will see later in part III, this is not a trivial act.

Attempt is made to explain gestures and movements through bodily-kinesthetic intelligence. To be mobile in the space to understand its nuances is a dimension of spatial intelligence has emerged clearly in these studies. The data showed how architects continued to navigate on the site virtually, to explore the features of the site as well as the spaces that they built by shifting their locations continuously.

What was more surprising was that they reacted to and altered what they created. They could quickly grasp the rapidly altered environment. Spatial intelligence is also chasing change in perception. The bodily actions and gestures were used to not only understand the configurations of object or spaces, but also for altering them.

The sessions clearly showed different ways in which designers deploy spatial intelligence. The post explains this through several events that occurred in the design sessions. Do see this as work in progress, till the next two parts are uploaded.

Preview of the next post

Are there more effective explanations to gestures and body movements?

Part III, the next part, will treat design as a corporal act using embodied cognition framework. This theory draws observations from many fields like sports and music, to present more convincing answers to why designers used gestures and body movements.

The post will also argue that the choice to use gestures is with the designer and his decision is influenced by contribution that movements make to the evolving thoughts. Both the theories show advantages of getting the body involved while thinking, particularly when innovations are spatial in nature.

Notes and reference

  1. Athavankar U. A., (1999) Gestures, Imagery and Spatial Reasoning. In: Garo JS, Tversky B (eds) Visual and Spatial Reasoning. Preprints of the International Conference on visual and spatial Reasoning, (VR 99) MIT, Cambridge, June 15–17, 1999, pp 103–128.
  2. Athavankar, U.A., Bokil, P., Guruprasad, K., Patsute, R., Sharma, S.: (2008) Reaching Out in the Mind’s Space. In: Design Computing and Cognition 2008, pp. 321–340
  3. The discussion here is based on Howard Gardner’s famous theory of ‘Multiple intelligences’
  4. The videos of the sessions, each lasting over one hour are not included for obvious reasons, though there are references to it. Also the videos included in this post have been shown in earlier posts. They are repeated here for readers who may not have seen them before.