Can we prevent designer from sketching?

Blindfolded designer in action

So far, we discussed how sketching contributes to the design problem solving and partners with the evolving thought. It externalizes thought, but surprisingly also contributes to clarification of the emerging thoughts. Sketching works as partner in the creative process, support unobtrusively and ideally should demand little expending of mental energy. With their unique role, we characterized such sketches as a thinking tool, a class by themselves. We also divided the act into smaller actions and modeled them as a cognitive act. We looked at how budgeting of mental energy needs to be balanced between problem solving and creating instructions for sketching the idea.

The thinking sketches look like inevitable partner in design thinking and design problem solving. There are no reasons to doubt these statements. However, it automatically implies that you need quick and effortless sketching abilities, if you want to choose design or architecture as a career. There is more than adequate support to such a statement. There are lots of examples of great architects and designers being extremely good at sketching. (and even drafting) FLW is a good example of this. This justifies out effort listed in the last post that documents innovative ways of how sketching can be taught to students who may not necessarily start with good sketching. But

“Can such a statement be generalized. Should careers in design be restricted to those who are already good in sketching?”

Some books on great designers do list their sketching abilities. There is not doubt that sketching is a good skill to have. This has also been a subject research and documentation. (i.e. Leonardo’s sketches) However, why all books on great designers do not discuss their sketching abilities nor show their sketching samples? Should we interpret this silence, as ‘They do not have great sketching skills to talk about’ and yet they have succeeded?

To investigate this, it was possible to study sketches of all great names in design, but this was beyond my reach and means. Besides, there are several creative people connected with art and design, who do not use sketching. I intuitively felt that it was not fair to expect everyone to be competent in sketching. So, I decided to look at

“Is there an alternative route to sketching? What will happen if you stop an architect or a design from sketching?”

I decided to pursue this alternative route to discover answers through properly designed experiments in which designers participated. This led to series of studies and experiments that I conducted between 1995 and 2008 AD. The results inform us of the untapped capabilities of human mind and special abilities used by designers and architects in solving design problems. Reflecting back, I thing it was fortunate that I asked this question to myself. Else we would never have known the hidden capabilities would have remained unreported.

The primary research questions that we address were,

“Would the designer solve a design problem when blindfolded and thus prevented from sketching? If yes, how?”

Capturing designer in action

This demanded developing a strange scenario and a new experimental protocol, where the design process was captured live when the designer is solving a typical design problem.

Design problem

The design project was taken from local company manufacturing range of Thermowares as consumer durable and gift sets. Their range included insulated containers, food boxes and vacuum flasks used in households. The problem selected was to design a casserole that can retain food temperature. It should be used to store as well as serve hot/cold food item and can be offered as a gift item. One of the leading local industrial designer voluntarily participated in it. He is referred to as SP.


We needed to develop experiment protocols to ensure beyond doubt that the actual visualization of the solutions and design actions are completed when the designer is not allowed to sketch.

SP was given a written brief to read and it was cross-checked that he remembered it thoroughly. He was then told that he will wear an eye mask and will develop design in blindfolded conditions. He was asked to concurrently speak-aloud whatever is passing through his mind.1 All the steps in the session were video recorded. When he was satisfied with his creation, he was told to verbally sum up the final design solution. Then, the eye mask was removed and he was asked to sketch his ideas as quickly as he can and not add new ideas during sketching.

Watching design action

Few general observations before we move on to surprises. SP was comfortable with the think-aloud process and finished designing in 56.5 minutes, after reading and recalling the project brief. Further, he took 7 to finish sketching his idea at the end. The session was fully recorded on video with a front and a top camera.

What happened was far beyond what we expected. SP developed alternatives for every design feature, evaluated them by simulating its use mentally and selected the most effective design approach to proceed. (See video 1) He played with different features, manipulated their locations in space to explore the most effective configuration. Halfway through, while simulating the use of design in his mind, he discovered a major functional mistake and reconfigured the new solution quickly, all this in his mind! A quick glimpse at the entire video record showed that throughout the session SP meticulously and mentally sculpted the shape and made sure that he responded to all functional and even production issues. (See video 2 & 3)

Video 1: SP developed features keeping function in mind, evaluated them by simulating its use mentally and selected the most effective design approach to proceed

Video 2: Watch SP as if he is sculpting the shape with his hands, as if he interacting with something real in front of him

SP 3, SP 5


Video 3, 5: Watch SP anticipating even production related issues. Later he assembled the product components with his hands.

He was comfortable taking decisions based on aesthetic judgment, decided on colour and product graphics before he declared that he has completed the design assignment. (See video 4) The detailed account of the session has been published in a paper earlier.2 The only visible difference was that he appeared to be developing the shape, features as well as manipulating and assembling the parts in his mind using hand gestures! The videos bear this out.

SP 4


Video 4: Watch SP take form decisions and refer to product graphics.

Let us return to some of the questions that we started with.

How do we make sure that SP completed the entire design in his mind when he was blindfolded?

How do we make sure that he did not add new ideas during the 7 minutes, when he sketched the final solution? After all, sketching does prompt ideas!

That he was not given enough time to add new ideas during sketching is not sufficient to prove the hypothesis scientifically. To ensure this, the video recording of the session was completely transcribed and later systematically coded. We then listed all the features in his final sketch and matched them with descriptions and references to each feature in the transcripts during the blindfolded conditions. To doubly make sure, we also checked references to features and descriptions in the final summing-up part of the transcripts. Results were surprising. Ninety-five percent of the features in the final sketch had unambiguous matching descriptions in the transcriptions. Obviously, SP had visualized all details in the mind’s eye.

Going beyond doubt

To make it triply sure (validity through triangulation), we asked two new designers to look at SP’s video after the final solutions were edited out. Based on his recorded think-aloud and the gestures, they were asked to reconstruct and sketch the final solution that SP had in his mind. Sketches that both the designers produced were very close to what SP had sketched.3

In the earlier posts, we had emphasized the role that sketching plays as an act, process and as a display in design problem solving. The obvious question that needed to be answered was,

What compensated for the sketching and the lack of visible display?

Is it likely that SP used his mental imagery capabilities to visualize and detail the ideas? For most designers this is not a question worth brooding on. When visualizing, they routinely develop and see their ideas in their mind. It is referred as seeing in the mind’s eye.

Mind’s eye in action

So common is the use of mind’s eye and so real are their experiences, that nobody in the design community ever discusses it, unless someone shows an exceptionally high standard. So, it is not surprising that design literature does list anecdotal evidence on use of mental imagery by the gifted designers. Frank Lloyd Write is known to have visualized the entire idea and details of his famous building ‘Falling water’ in his mind and was able to quickly draft it when Kaufman decided to visit his studio at a short notice. McKim mentions how inventors like Tesla and James watt developed their complete ideas in their mind.4 Mozart had the ability to hear his orchestra and every instrument in his mind’s ear and wrote his final score directly.

Anecdotes and experiences don’t make good science. Besides, there are no accounts of not so gifted designers and creators and their visualization abilities. For this, we need to take a short detour to understand how we use mental imagery and the way mind’s eye works.

On mental imagery and the mind’s eye

Experience of mental image is defined as ‘seeing in the absence of actual visual input in front of you’. To the person experiencing this, the image looks real. (Most convincing and yet difficult to prove example would be experience of dreams) Mental images were not studied because they could not be measured till Shepard and Metzler showed how this could be done.5 Subsequently, there are many studies of mental imagery capabilities. Kosslyn studied mental imagery extensively and listed its characteristics (Fragility, density …) as well as the operations that you can perform on it, like image scanning, image generation and transformations.6, 7 There is also literature that shows how creativity and mental imagery work in synergy.8 With these theoretical back ups the idea of mind’s eye has acquired greater acceptance.

Let us return to the experiment that we started with. Most of the videos above show how SP was continuously using hand gestures to shape an invisible object in front of him. He was obviously working in his mind’s eye. Its virtual-ness turned out to useful, because such a model was quick to manipulate and the change could be ‘observed’ instantly. He interacted with the model with his hand gestures, shaped it, felt the shape and the curves and used the shapes to test if they would work. He used his hand gestures as if he was sculpting a virtual product shape in front of him. (See earlier videos) All these gestural interactions with the virtual model were as real as it would have been with a physical model that he would have created under normal conditions. The gestures were used as much to think and manipulate the virtual object as for communicating the idea.

There is sufficient evidence in research literature to show that there is interrelationship between motor experiences and high-level spatial reasoning. For example, when presented with spatial problems such as mental rotation tasks those who use motor actions (like moving and tilting hands) perform better than those who exclusively depend on visual processes like handling the task in the minds eye. (Ref) That explains surprising accuracy of his gestures and hand movement was surprising. So, when this recording (Audio+video) was shown to two new industrial designers, they could reconstruct the final idea with a fair accuracy. We will focus on the role of gestures and body movements in the future posts.

The structure of the experiment also raised other related questions,

Was the designer’s thinking hampered when he was blindfolded? Was he forced to deviate from the normal design process?

It is difficult to come to a conclusive answer, without comparing this process with the normal process accompanied by sketching. But the transcriptions show that all the typical traits associated with creative problem solving were visible. For example, He systematically identified and tackled all the functional problems one by one. He continued to use ‘moves and reflections’. His moves displayed non-linear shifts, in that he shifted from feature to feature and returned to them again. He iterated extensively, revisiting his earlier decisions several times. His creative explorations remained non-linear.

For most of the ideas that he generated, he simulated its use in his mind’s eye and identified potential problems, and even modified his solutions.

What compensated lack of sketching?

Mind’s eye offered a display that could quickly generate and regenerate image display. It served as a pliable model that he could quickly manipulate in response to his evolving thoughts. It is fast to change, but is fragile and would normally demand budgeting of mental energy to retain and regenerate it. If this is so,

Why the energy budget was not an issue here?

There is no clear answer to this question. I can only venture an answer. Holding images in the mind is indeed difficult. It is true that they need to be regenerated frequently to remain visible in the mind’s eye and that requires budgeting of mental energy. However, most of such findings on energy budget and limitations of short-term memory are based on showing the participants completely new and unfamiliar pictures or words and ask them to recall. As against this, SP used a clear logic and reasoning to evolve the form, which clearly reflected in his speech. So, in case the image is lost due to its fragility, he could regenerate it easily using the logic.

The experiment clearly shows that mental imagery could be one of the viable substitutes to sketching. Perhaps we should correct our earlier statement. What design thinking needs is an ability to represent an object in some form that act as a stable display, that allows you to manipulate it quickly and effortlessly. Such a definition ideally fits sketching, but is inclusive enough to legitimately accommodate other forms of representations like mental imagery.

Could these results have been a freak case? Is the ability restricted to a gifted few? Or is based on years of in design that SP had?

This is a unique ability that designers seem to acquire during their education and practice. In fact, most professional designers who participated in the later experiments told me that, it gives them flexibility to work whenever and wherever they choose. SP himself commented, by using mental imagery “I carry the problem with me in my mind.”

Sum up

The article seeks answer to the question, ‘Is sketching as a representation tool an indispensible part of design problem solving?’ If yes, then this should be treated as an essential skill in design and architecture careers. The answer is explored through a carefully designed experiment, in which the designer is given a design problem to solve and he is blindfolded and thus prevented from sketching.

The fact that designer solved complete design problem when he was blindfolded was ensured by the way experiment was designed. The results show a clear and unambiguous answer that confirms that designers can do without sketching and they compensate this loss with their abilities to create images in their mind’s eye, manipulate them and work with them to develop solutions. In fact, in this case, he created a virtual model in front of him, interacted with it with his hands and altered it willfully. It also showed that he could effortlessly respond to this strange situation and that his design process was not altered.

Mental images are known to be fragile and not easy to work with. They also demand budgeting of more portion of mental energy to retain and process them. So, designer’s visible and effortless switchover to handling of imagery is not easy to explain. Perhaps because the images were generated and regenerated based on his reasoning, he does not seem to face the problem of diversion of excess mental energy. That also explains why designer’s design process does not visibly change.

The designer extensively used hand gestures while generating ideas and for interacting with the virtual model that he created in the front. He perhaps also used them to communicate his ideas. What is worth noting was that his interactions were amazingly accurate.

The results force us to correct our earlier statement. What design thinking needs is an ability to represent an object in some form that act as a relatively stable display, but allows you to manipulate it quickly and effortlessly. Such a definition no doubt fits sketching, but is inclusive enough to legitimately accommodate other forms of representations like mental imagery. Even if designer develops competence is handling one of them, he should be able to make a reasonable headway in design career.

Preview of the next post

When I conceived this experiment reported in this post, I had no confidence that I will discover new findings. Reflecting back, it could have been because of my love for sketching. I was more than surprised by these results and the findings. But it left a nagging feeling,

“Can this result be a freak case? Or is it because of years of experience of designing that SP had?” Or “Is this ability restricted to a gifted few?”

This subsequently led to series of experiments with designers and architects. More about it in the following post.

Notes and references

1 There is sufficient evidence to show that such think-aloud exercises reveals part of the contents of the short-term memory in action. Note that what is captured is what he naturally chose to speak aloud and may not represent everything that passed through his mind. These are referred as think-aloud sessions. Evidence shows that it approximates what he is thinking about. (In fact, most designers and architects are comfortable talking while designing)

2 Athavankar U., (1997) Mental imagery as a design tool. Cybernetics and Systems, 28 (1), 25-42.

3 Athavankar U., (1999) Gestures, imagery and spatial reasoning, In J. Gero & B. Tversky (Eds.), Visual and Spatial Reasoning (pp. 103-128). Preprints of the International Conference on Visual Reasoning (VR99), MIT

4 McKim R. H., (1972) Experiences in visual thinking. Brooks/Cole, California

5 Shepard R. and Metzler J., (1971) “Mental rotation of three dimensional objects.” Sci
ence. 171(972):701-3

6 Kosslyn S., (1983 ) Ghost’s in the mind’s machine, creating and using images in the brain. Norton, New york

7 There are also groups in cognitive psychology who dispute this, leading to what is now termed as mental imagery debate

8 Finke R., (1990) Creative imagery, discoveries and inventions in visualization. New Jersy, Lawrence Erlbaum



4 thoughts on “Can we prevent designer from sketching?

  1. Interesting read sir. However the designers ability to visualize may be limited by the vocabulary of language they are communicating when blindfolded. Similarly somebody good at verbal communication may be limited by visual vocabulary and may not be convey the ideas by sketches. Hence it calls for similar experiment where a designer is asked to just sketch the ideas and not communicate them verbally to explain them to others !


    1. See replies:
      1. ability to visualize may be limited by the vocabulary of language: In most cases, the the statements are in more than one language (in India particularly). Besides, most designers have no problem speaking. Limitations of vocabulary are overcome by use of gestures.
      2. Those who have problems with visual vocabulary are in fact more comfortable as they can use gestures. Gestures come naturally to most people. The next post will deal with gestures more extensively.
      3. designer is asked to just sketch the ideas and not communicate them verbally: this was my first experiment, when I was studying role of sketching. The video was replayed to him after the session and was asked to comment. Because there were too many others who were working on sketching, I shifted to mental imagery. Besides, i was interested in imagery per se anyway.


  2. Thank you Sir for this interesting and very informative article.
    The design problem given to the designer here, was related to a 3D object. That could have lead him to express his thought of final output with hand gestures, that’s what I feel. If the design problem like poster design or making 2D graphic forms of a given object will be expressed similarly through hand gestures?
    For visual deigns like story illustrations, if the designer will be able to express the exact picture of his thoughts through words?
    Ideation is the first step of the sketching and sketching leads to another idea, is what I think.


    1. I agree that most of the detail case studies here deal with 3D objects. (industrial design and architecture) I had mentioned this in my earlier post. But I also have extended informal studies with film makers and dancers.Indeed they deal with 3D space in some way. I have not extended these to graphic design work. But where ever they were graphic issues, these subjects did move finger tips as if they were drawing in 2D. So, I would not rule out use of gestures in 2D completely. Of course studies would confirm these hunches.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s